
Christian Badertscher & Aggelos Kiayias

The University of Edinburgh

& IOHK

Tutorial:

The Ouroboros Protocol Family

Advances in Financial Technologies, 2019

…

…

▪ Implement an immutable transaction

ledger…

The Goal of Blockchain Protocols

2

…

…

▪ Submit transactions

▪ Get included into the ledger (if valid)

▪ Everyone can access ledger

▪ Ledger can’t be changed (immutable)

Immutable Ledger Properties

3

The Ledger Functionality

4

▪ The functionality formalizes the relevant blockchain properties

and the limited capabilities of an adversary.

- E.g., common state, well-formed blocks, recent transactions etc.

The Ledger Functionality

5

▪ The functionality formalizes the relevant blockchain properties

and the limited capabilities of an adversary.

- E.g., common state, well-formed blocks, recent transactions etc.

▪ Important: It captures the service provided to any

cryptographic protocol.

Applications: Incentive Mechanisms, Poker, general MPC

The Ledger Functionality

6

Realizing the Ledger
…

…

▪ Implement an immutable transaction

ledger…

But:

▪ Avoid a central trusted entity

▪ Allow dynamic and easy participation

▪ Be permissionless and accessible to

anyone (read and write)

7

Realizing the Ledger

▪ The case of Bitcoin:

▪ Parties repeatedly try to solve cryptographic puzzles. A solution

allows to create a block and append it to the chain.

8

Realizing the Ledger

▪ The case of Bitcoin:

▪ Parties repeatedly try to solve cryptographic puzzles. A solution

allows to create a block and append it to the chain.

9

B0

Genesis Block

Realizing the Ledger

▪ The case of Bitcoin:

▪ Parties repeatedly try to solve cryptographic puzzles. A solution

allows to create a block and append it to the chain.

10

B1

Lottery-style (simplified):

Find nonce N s.t. Hash(N, tx…, Hash(Bi-1)) < T

Observation:

More hashing power → better chances to produce blocks.

B0

Realizing the Ledger

▪ The case of Bitcoin:

▪ Parties repeatedly try to solve cryptographic puzzles. A solution

allows to create a block and append it to the chain.

11

A Tree Structure (Forks)

B0

B0

Realizing the Ledger

▪ The case of Bitcoin:

▪ Parties repeatedly try to solve cryptographic puzzles. A solution

allows to create a block and append it to the chain.

12

Blockchain Properties [GKL15,PSS17]:

Common-prefix (CP): Honest miners share a consistent common prefix.

Chain-growth (CG): The number of blocks increases over time.

Chain-quality (CQ): A guaranteed fraction of honestly contributed blocks.

→ Ledger can be realized assuming honest majority of hashing power

Realizing the Ledger

A very nice blockchain feature: Dynamic availability (DA).

- Parties join and leave at will. They need to bootstrap a chain

when (re-) joining.

→ Easy in Bitcoin: “longest-chain rule” (general: most difficult chain).

- Number of online/offline parties changes over time

→ Analysis must account for that.

- No a priori knowledge of participation levels is required by the

protocol.

- Unannounced disappearance.

13

Realizing the Ledger

▪ The case of Bitcoin:

▪ Parties repeatedly try to solve cryptographic puzzles. A solution

allows to create a block and append it to the chain.

▪ Bitcoin is not energy efficient as the hash-based lottery

consumes a lot of energy to ensure the protocol’s security.

14

B0

Realizing the Ledger

▪ The case of Bitcoin:

▪ Parties repeatedly try to solve cryptographic puzzles. A solution

allows to create a block and append it to the chain.

▪ Bitcoin is not energy efficient as the hash-based lottery

consumes a lot of energy to ensure the protocol’s security.

15

Proof-of-Stake to the rescue!

B0

Realizing the Ledger

Proof-of-Stake Blockchains:

- Use stake (a virtual resource) instead of hashing power.

- Miners = Stakeholders.

- Next stakeholder to produce block elected with probability

proportional to stake.

16

Realizing the Ledger

17

Two categories:

Nakamoto-style consensus (e.g., Ouroboros, Snow White)

BFT-style consensus (e.g., Algorand, Casper, Ouroboros-BFT)

Proof-of-Stake Blockchains:

- Use Stake (a virtual resource) instead of hashing power.

- Miners = Stakeholders.

- Next stakeholder to produce block elected with probability

proportional to stake.

Realizing the Ledger

18

Complications of PoS vs. PoW:

- PoS has costless simulation:

No physical resources to create blocks: several transaction

histories could be generated “in the adversaries head”.

- Long-Range attacks in the threat model:

Adversary tries to deceive (new) participants into believing the

“wrong” history (which are cheap to generate).

Proof-of-Stake Blockchains:

- Use Stake (a virtual resource) instead of hashing power.

- Miners = Stakeholders.

- Next stakeholder to produce block elected with probability

proportional to stake.

Tutorial Overview

19

▪ The development steps of a pure PoS-based blockchain

protocol in the dynamic availability setting.

▪ Security follows from the “honest majority of stake” assumption.

▪ Start with the initial version and refine it until all the

security requirements are achieved.

Tutorial Overview – Main Content

20

Ouroboros

“Classic”
(Crypto 17)

Ouroboros

Praos
(Eurocrypt 2018)

Ouroboros

Genesis
(CCS 2018)

Ouroboros

Chronos
(In submission, 2019)

Semi-adaptive adversaries, synchrony

Strong mathematical framework

Tutorial Overview – Main Content

21

Ouroboros

“Classic”
(Crypto 17)

Ouroboros

Praos
(Eurocrypt 2018)

Ouroboros

Genesis
(CCS 2018)

Ouroboros

Chronos
(In submission, 2019)

+ Adaptive Adversaries

+ Network Delay (“semi-synchronous”)

Semi-adaptive adversaries, synchrony

Strong mathematical framework

Tutorial Overview – Main Content

22

Ouroboros

“Classic”
(Crypto 17)

Ouroboros

Praos
(Eurocrypt 2018)

Ouroboros

Genesis
(CCS 2018)

Ouroboros

Chronos
(In submission, 2019)

+ Adaptive Adversaries

+ Network Delay (“semi-synchronous”)

+ Full dynamic availability

+ Bootstrapping from Genesis

Semi-adaptive adversaries, synchrony

Strong mathematical framework

Tutorial Overview – Main Content

23

Ouroboros

“Classic”
(Crypto 17)

Ouroboros

Praos
(Eurocrypt 2018)

Ouroboros

Genesis
(CCS 2018)

Ouroboros

Chronos
(In submission, 2019)

+ Adaptive Adversaries

+ Network Delay (“semi-synchronous”)

+ Full dynamic availability

+ Bootstrapping from Genesis

+ Only based on same-speed assumption.

+ Bootstrapping state and time from genesis

Semi-adaptive adversaries, synchrony

Strong mathematical framework

Tutorial Overview – Main Content

24

Ouroboros

“Classic”
(Crypto 17)

Ouroboros

Praos
(Eurocrypt 2018)

Ouroboros

Genesis
(CCS 2018)

Ouroboros

Chronos
(In submission, 2019)

+ Adaptive Adversaries

+ Network Delay (“semi-synchronous”)

+ Full dynamic availability

+ Bootstrapping from Genesis

+ Only based on same-speed assumption.

+ Bootstrapping state and time from genesis

= PoS blockchain in the DA setting

without global clocks.

Semi-adaptive adversaries, synchrony

Strong mathematical framework

Tutorial Overview – Additional Features

25

Ouroboros

“Classic”
(Crypto 17)

Ouroboros

Praos
(Eurocrypt 2018)

Ouroboros

Genesis
(CCS 2018)

Ouroboros

Chronos
(In submission, 2019)

Ouroboros BFT

Ouroboros

Crypsinous
(S&P 2019)

An extremely simple BFT protocol that follows

from the Ouroboros Classic analysis

Ouroboros with Privacy

Ouroboros – Protocol Design

26

Ouroboros

“Classic”
(Crypto 17)

Ouroboros

Praos
(Eurocrypt 2018)

Ouroboros

Genesis
(CCS 2018)

Ouroboros

Chronos
(In submission, 2019)

+ Adaptive Adversaries

+ Network Delay (“semi-synchronous”)

+ Full dynamic availability

+ Bootstrapping from Genesis

+ Only based on same-speed assumption.

+ Bootstrapping state and time from genesis

Semi-adaptive adversaries, synchrony

Strong mathematical framework

= PoS blockchain in the DA setting

without global clocks.

The General Picture and Assumed Resources

27

Arbitrary

Strategy

Arbitrary

Strategy

Blockchain

Protocol

Blockchain

Protocol

Blockchain

Protocol

Blockchain

Protocol

Genesis

Block

Clock

Functionality

Random

Oracle

Diffusion

Network

Setup Resources

The General Picture and Assumed Resources

28

Arbitrary

Strategy

Arbitrary

Strategy

Blockchain

Protocol

Blockchain

Protocol

Blockchain

Protocol

Blockchain

Protocol

Genesis

Block

Clock

Functionality

Random

Oracle

Diffusion

Network

Setup Resources

- Synchrony: Time-stamps, slots

- Unpredictability: Hash-functions

- Communication: Multicast/Broadcast, limited delay Δ

Ouroboros – Protocol Design

29

Epoch 1 Epoch 2

= Public address: verification key vkj of a signature scheme

= A number of coins (tokens) sj associated to vkj

Ouroboros – Protocol Design

30

Epoch 1 Epoch 2

G

Random

seed

+

Ouroboros – Protocol Design

31

Epoch 1 Epoch 2

G

Random

seed

+

In each round:

1.) Determine the current longest valid chain.

2.) Determine Slot-Leadership

3.) Slot leader: Pack transactions, create and publish block

Ouroboros – Protocol Design

32

Epoch 1 Epoch 2

G

Random

seed

+

In each round:

1.) Determine the current longest valid chain.

2.) Determine Slot-Leadership

3.) Slot leader: Pack transactions, create and publish block

Ouroboros – Protocol Design

33

Epoch 1 Epoch 2

G

Random

seed

+

Slot Leadership in Classic: Random process (“Coin Tossing”)

F(, , , seed, slot) →

Ouroboros – Protocol Design

34

Epoch 1 Epoch 2

G

Random

seed

+

Slot Leadership in Classic: Random process (“Coin Tossing”)

F(, , , seed, slot) →

For example:

Biased-Coin Toss

Ouroboros – Protocol Design

35

Epoch 1 Epoch 2

G

Random

seed

+

Slot Leadership in Classic: Random process (“Coin Tossing”)

F(, , , seed, slot) →

For example:

Biased-Coin Toss

1

6

Ouroboros – Protocol Design

36

Epoch 1 Epoch 2

G

Random

seed

+

Slot Leadership in Classic: Random process (“Coin Tossing”)

F(, , , seed, slot) →

For example:

Biased-Coin Toss

1

6

1

3

Ouroboros – Protocol Design

37

Epoch 1 Epoch 2

G

Random

seed

+

Slot Leadership in Classic: Random process (“Coin Tossing”)

F(, , , seed, slot) →

For example:

Biased-Coin Toss

1

6

1

3
1

2

Ouroboros – Protocol Design

38

Epoch 1 Epoch 2

G

Random

seed

+

Slot Leadership in Classic: Random process (“Coin Tossing”)

F(, , , seed, slot) →

Simplified model “Semi-adaptive” (will be strengthened later):

- Adversary cannot adaptively react on the (public) slot-leader schedule.

(As an approximation: think of a static corrupted set of parties)

Ouroboros – Protocol Design

39

Epoch 1 Epoch 2

G

Random

seed

+

In each round:

1.) Determine the current longest valid chain.

2.) Determine Slot-Leadership

3.) Slot leader: Pack transactions, create and publish block

Ouroboros – Protocol Design

40

Epoch 1 Epoch 2

G

Random

seed

+ Block structure:

Hash pointer to prev. block

Content / Transactions

Slot number

Signature of slot leader

Ouroboros – Protocol Design

41

Epoch 1 Epoch 2

G

Random

seed

+

In each round:

1.) Determine the current longest valid chain.

2.) Determine Slot-Leadership

3.) Slot leader: Pack transactions, create and publish block

Ouroboros – Protocol Design

42

Epoch 1 Epoch 2

G

Random

seed

+

Chain Selection Rule:

Adopt a valid new chain if it is longer and does not

fork by more than k blocks from local chain.

Otherwise, keep local chain.

Simplified model: no newcomers, full participation (will be strengthened later).

Ouroboros – Protocol Design

43

Epoch 1 Epoch 2

G

Random

seed

+

Chain Selection Rule:

Adopt a valid new chain if it is longer and does not

fork by more than k blocks from local chain.

Otherwise, keep local chain.

Protection against

long-range attacks

(to be discussed later).

Simplified model: no newcomers, full participation (will be strengthened later).

Ouroboros – Protocol Design

44

Epoch 1 Epoch 2

G

Random

seed

+

Pointer to prev. block

Transactions

Slot number

Signature of leader

In each round:

1.) Determine the current longest valid chain.

2.) Determine Slot-Leadership

3.) Slot leader: Pack transactions, create and publish block

Ouroboros – Protocol Design

45

Epoch 1 Epoch 2

G

Random

seed

+

Pointer to prev. block

Transactions

Slot number

Signature of leader

Epoch Switch:

1.) New Stake Distribution

2.) New Epoch Seed

Ouroboros – Protocol Design

46

Epoch 1 Epoch 2

G

Random

seed

+

Pointer to prev. block

Transactions

Slot number

Signature of leader

Epoch Switch:

1.) New Stake Distribution

→ As reported by transactions

2.) New Epoch Seed

Ouroboros – Protocol Design

47

Epoch 1 Epoch 2

G

Random

seed

+

Pointer to prev. block

Transactions

Slot number

Signature of leader

Epoch Switch:

1.) New Stake Distribution

2.) New Epoch Seed
A slightly more complex process

Ouroboros – Protocol Design

48

Epoch 1 Epoch 2

G

Random

seed

+

Pointer to prev. block

Transactions

Slot number

Signature of leader

Epoch Switch:

1.) New Stake Distribution

2.) New Epoch Seed
A slightly more complex process

A secure implementation (MPC) that achieves a

randomness beacon.

- PVSS, messages packed into blocks

Ouroboros – Protocol Design

49

Epoch 1 Epoch 2

G

Random

seed

+

Pointer to prev. block

Transactions

Slot number

Signature of leader

Epoch Switch:

1.) New Stake Distribution

2.) New Epoch Seed
A slightly more complex process

Randomness-Beacon Functionality:

- Emits a random value at start of epoch

- Cannot be predicted ahead of time and not

tampered

Ouroboros – Protocol Design Summary

50

Random

seed

+

G

Ouroboros – Protocol Design Summary

51

Random

seed

+

G

Randomness

Beacon

Ouroboros – Protocol Design Summary

52

Random

seed

+

Randomness

Beacon

G

+
Random

seed

Note:

Majority of honest stake required

from each new distribution.

Ouroboros – Protocol Design Summary

53

Random

seed

+

G

+
Random

seed

Randomness

Beacon

Randomness

Beacon

Ouroboros – Protocol Design Summary

54

Random

seed

+

G

+
Random

seed

+
Random

seed

Randomness

Beacon

Randomness

Beacon

Ouroboros – Protocol Design Summary

55

Random

seed

+

G

+
Random

seed

+
Random

seed

Randomness

Beacon

Randomness

Beacon

Ouroboros – Analysis

56

▪ Analysis of first epoch

▪ Lifting to multiple epochs (inductive argument)

Ouroboros – Analysis of First Epoch

57

Epoch 1

G

Random

seed

+

Life is not perfect... and some forks will emerge…

We need a careful analysis!

v

A General Analytical Approach:

The Forkable String Analysis

58

Slots are assigned a symbol from an alphabet. The symbol signifies

whether honest parties speak, adversaries speak or no-one

speaks.

A General Analytical Approach:

The Forkable String Analysis

59

Slots are assigned a symbol from an alphabet. The symbol signifies

whether honest parties speak, adversaries speak or no-one

speaks.

Such a string gives rise to a family of admissible graphs that

describe all that can happen in an execution that follows longest

chain:

A General Analytical Approach:

The Forkable String Analysis

60

Slots are assigned a symbol from an alphabet. The symbol signifies

whether honest parties speak, adversaries speak or no-one

speaks.

Such a string gives rise to a family of admissible graphs that

describe all that can happen in an execution that follows longest

chain:

The analysis reveals that the vast majority of strings (under proper

conditions) have admissible graphs that translate to well behaved

protocol executions.

Forks: Abstracting Protocol Executions

61

Characteristic string:

0: Slot belongs to exactly one honest party.

1: Slot belongs to a malicious coalition

: Slot cannot be claimed (e.g. if election process would assign no leader)

Characteristic string:

0: Slot belongs to exactly one honest party.

1: Slot belongs to a malicious coalition

: Slot cannot be claimed (e.g. if election process would assign no leader)

62

Genesis

honest

party

produces

block 1

Forks: Abstracting Protocol Executions

Characteristic string:

0: Slot belongs to exactly one honest party.

1: Slot belongs to a malicious coalition

: Slot cannot be claimed (e.g. if election process would assign no leader)

63

Genesis

honest

party

produces

block 1

adversary

serves

block 3 to

honest

party

Forks: Abstracting Protocol Executions

64

Characteristic string:

0: Slot belongs to exactly one honest party.

1: Slot belongs to a malicious coalition

: Slot cannot be claimed (e.g. if process would assign no leader)

adversary

serves

block 6 to

honest

party

Forks: Abstracting Protocol Executions

65

Characteristic string:

0: Slot belongs to exactly one honest party.

1: Slot belongs to a malicious coalition

: Slot cannot be claimed (e.g. if process would assign no leader)

adversary serves block 1

to honest party

(Δ=3)

Forks: Abstracting Protocol Executions

66

Characteristic string:

0: Slot belongs to exactly one honest party.

1: Slot belongs to a malicious coalition

: Slot cannot be claimed (e.g. if process would assign no leader)

adversary serves block 1

to honest party

(Δ=3)

Fork with delay Δ=3

Forks: Abstracting Protocol Executions

67

Characteristic string:

0: Slot belongs to exactly one honest party.

1: Slot belongs to a malicious coalition

: Slot cannot be claimed (e.g. if process would assign no leader)

adversary

serves block 12

to honest party

Forks: Abstracting Protocol Executions

68

Important Property:

Depth of honest nodes increases (from

left to right) if more than Δ slots apart.

(Lower bound on the depth of the fork)

Forks: Abstracting Protocol Executions

Combinatorics of Characteristic Strings

69

▪ Given a characteristic string can we classify the family of

forks that it permits?

▪ Characteristic string is drawn according to a specific probability

distribution: bias toward 0 (by honest-majority assumption).

▪ Forkable string: those strings that allow a fork with two

tines of length equal to the height of the fork.

Combinatorics of Characteristic Strings

70

▪ Given a characteristic string can we classify the

family of forks that it permits?

▪ Characteristic string is drawn according to a specific

probability distribution.

▪ Forkable string: those strings that allow a fork with

two tines of length equal to the height of the fork.

Focus on this particular structure:

→ Analysis shows that this is a very unlikely structure to occur (as a

function of the length of the sampled string).

→ Note: Also unlikely as a subgraph of any execution, i.e., no

execution has such a bad divergence point (and thus we have CP).

Drawing from Bitcoin analysis

71

5

4

3

2

1

0

-1

-2

-3

-4

-5

At the core of the analysis

lies a 1D Random Walk

(= Probability an honest

party finds a POW)

(Probability the adversary finds a POW)

Difference:

1.) #PoWs of

adversary in

time segment

-

2.) #PoWs of

honest parties

in time segment

“Uniquely successful rounds”

- A favorable step is downwards.

- Such a step is more likely by assumption .

Drawing from Bitcoin analysis

72

5

4

3

2

1

0

-1

-2

-3

-4

-5

At the core of the analysis

lies a 1D Random Walk

(= Probability an honest

party finds a POW)

(Probability the adversary finds a POW)

“Uniquely successful rounds”

Difference:

1.) #PoWs of

adversary in

time segment

-

2.) #PoWs of

honest parties

in time segment

from PoW to PoS

73

▪ Winning a slot for the honest parties (even uniquely) does

not necessarily constitute a favorable step in the random

walk.

“Nothing-at-stake”:

The adversary may reuse an opportunity to issue a

block in multiple paths of a fork

Forkable Strings

74

(for simplicity we do only the {0,1} case)

For a tine t, the following quantities are of interest to

the adversary:

• gap(t): length difference with leading honest node.

• reserve(t): number of adversarial slots after end of t.

• reach(t) := reserve(t) - gap(t).

Forkable Strings

75

For a tine t, the following quantities are of interest to

the adversary:

• gap(t): length difference with leading honest node.

• reserve(t): number of adversarial slots after end of t.

• reach(t) := reserve(t) - gap(t).

gap(t) = 4

Forkable Strings

76

For a tine t, the following quantities are of interest to

the adversary:

• gap(t): length difference with leading honest node.

• reserve(t): number of adversarial slots after end of t.

• reach(t) := reserve(t) - gap(t).

reserve(t) = 3

Forkable Strings

77

For a tine t, the following quantities are of interest to

the adversary:

• gap(t): length difference with leading honest node.

• reserve(t): number of adversarial slots after end of t.

• reach(t) := reserve(t) - gap(t).

reach(t) = -1

Forkable Strings

78

For a tine t, the following quantities are of interest to

the adversary:

• gap(t): length difference with leading honest node.

• reserve(t): number of adversarial slots after end of t.

• reach(t) := reserve(t) - gap(t).

reach(t) = -1

Can the adversary catch up with

“longest chain” with this tine?

Forkable Strings

79

Looking at a fork F in general, we are interested in:

• reach(F): max reach(t)

• margin(F): second highest & disjoint reach(t’)

reach(t) = -1

reach(t') = -1

reach(ṫ) = 0
t’

Forkable Strings

80

Looking at a fork F in general, we are interested in:

• reach(F): max reach(t)

• margin(F): second highest & disjoint reach(t’)

reach(t) = -1

reach(t') = -1

reach(ṫ) = 0
t’

reach(F) = 0

margin(F) = -1

Forkable Strings

81

Looking at a fork F in general, we are interested in:

• reach(F): max reach(t)

• margin(F): second highest & disjoint reach(t’)

reach(t) = -1

reach(t') = -1

reach(ṫ) = 0
t’

reach(F) = 0

margin(F) = -1

If second highest allows to catch up with

longest: margin non-negative.

Define:

• Fact: is forkable (adversary wins) iff ≥ 0.

• We want to prove that the density of forkable strings among all strings is

tiny (assuming Hamming weight is below 1/2).

• We consider a 2D random walk defined by the pair where is

a binomial random variable.

Reach & Margin

82

𝜌(w) = maxF reach(F)
𝜇(w) = maxF margin(F)

w

(𝜌(w), 𝜇(w)) w

𝜇(w)

Recursive Formula for

Reach & Margin

83

Recursive Formula for

Reach & Margin

84

reach and

margin

decrement

Recursive Formula for

Reach & Margin

85

reach never

drops below 0

reach and

margin

decrement

Recursive Formula for

Reach & Margin

86

it is possible for the

adversary to

compensate for the

margin, by

sacrificing reach

reach never

drops below 0

reach and

margin

decrement

87

reach

probability

an honest

party wins a slot

probability

the adversary

wins a slot

2D Random Walk
margin

88

reach

probability

an honest

party wins a slot

probability

the adversary

wins a slot

2D Random Walk
margin

89

reach

probability

an honest

party wins a slot

probability

the adversary

wins a slot

2D Random Walk
margin

90

reach

probability

an honest

party wins a slot

probability

the adversary

wins a slot

2D Random Walk
margin

91

reach

probability

an honest

party wins a slot

probability

the adversary

wins a slot

2D Random Walk
margin

92

Analysis

Analysis shows:

93

Analysis

Analysis shows:

𝑅(𝑡), 𝑀(𝑡):

Reach resp. margin after 𝑡 𝑛 steps

of the random walk

(“coarse grained steps of the walk”).

94

Analysis

Analysis shows:

95

Analysis

Analysis shows:

96

Analysis

Analysis shows:

97

Analysis

Analysis shows:

An improved analysis shows an error

bound of

“The Combinatorics of the Longest-Chain Rule:

Linear Consistency for Proof-of-Stake Blockchains”

by Erica Blum and Aggelos Kiayias and Cristopher Moore

and Saad Quader and Alexander Russell.

98

Analysis

Analysis shows:

Conclusion:

- Characteristic string not forkable (w.h.p.)

→ No long diverging paths

- Common prefix achieved (w.h.p.)

Also: Chain Growth & Quality

99

Chain Quality: any sufficiently long section along a (viable) tine

must contain an honest node with overwhelming probability.

(→ Otherwise, #0’s < #1’s)

Chain Growth: The #0’s support growth and by the above, the

growth is reflected in any viable tine (with a small discount).

Also: Chain Growth & Quality

100

Chain Quality: any sufficiently long section along a (viable) tine

must contain an honest node with overwhelming probability.

(→ Otherwise, #0’s < #1’s)

Chain Growth: The #0’s support growth and by the above, the

growth is reflected in any viable tine (with a small discount).
Viable tines: Correspond to chains that

are long enough to be adopted by an

honest party at a given time.

Lifting To Multiple Epochs

101

Lifting To Multiple Epochs

102

Random

seed

+

G

Randomness

Beacon

Lifting To Multiple Epochs

103

Random

seed

+

G

Randomness

Beacon

Properties CP, CG, CQ

Lifting To Multiple Epochs

104

Random

seed

+

G

Randomness

Beacon

- CG+CQ: All honest parties report

a green block.

- CP: Agreement on green block.

Lifting To Multiple Epochs

105

Random

seed

+

G

Randomness

Beacon

- CG+CQ: All honest parties report

a green block.

- CP: Agreement on green block.

Epoch Randomness:

Has to be released after fixing the

stake distribution.

Random

seed

+

Lifting To Multiple Epochs

106

G

“Smooth Epoch Boundaries”

Distribution of entire characteristic string is uniquely

defined for this execution and dominated by a binomial

distribution favoring 0’s over 1’s (as before).

Incentives

107

How to make honest parties participate?

• Costs
• Such as verifying transactions, packaging them in the right order.

• Rewards
• Such as collecting fees.

Problem: Pure chain quality underrepresents the honest

parties’ effort: Effort in maintaining the inputs is not rewarded

proportionally.

Incentives

108

How to make honest parties participate?

• Costs
• Such as verifying transactions, packaging them in the right order.

• Rewards
• Such as collecting fees.

Problem: Pure chain quality underrepresents the honest

parties. Effort in maintaining the inputs is not rewarded

proportionally.

Key Idea:
Main effort is related to input contribution → Declare it to be

a separate task.

Incentives

109

Solution: Input Endorsers

• Each slot elects an additional stakeholder (or a set of stakeholders)

to contribute inputs.
• Using a parallel lottery.

• Like the 2-for-1 mechanism in PoW as in GKL analysis or Fruitchains.

• Endorsed inputs are permitted in the blockchain any time within a small

window following and inclusive the slot that elects them.

Outer Block

Input Block

Input Block

Incentives

110

Solution: Input Endorsers

• Each slot elects an additional stakeholder (or a set of stakeholders)

to contribute inputs.
• Using a parallel lottery.

• Like the 2-for-1 mechanism in PoW as in GKL analysis or Fruitchains.

• Endorsed inputs are permitted in the blockchain any time within a small

window following and inclusive the slot that elects them.

→ Protocol becomes a Nash equilibrium for an appropriate reward

function (that rewards input blocks in an aggregate fashion over a

sequence of blocks).

→ Overall #Input blocks

proportional to stake.

Outer Block

Input Block

Input Block

Ouroboros BFT

111

Ouroboros

“Classic”
(Crypto 17)

Ouroboros

Praos
(Eurocrypt 2018)

Ouroboros

Genesis
(CCS 2018)

Ouroboros

Chronos
(In submission, 2019)

Ouroboros BFT

Ouroboros

Crypsinous
(S&P 2019)

An extremely simple BFT protocol that follows

from the Ouroboros Classic analysis

Ouroboros with Privacy

Ouroboros BFT

112

Ouroboros

“Classic”
(Crypto 17)

Ouroboros

Praos
(Eurocrypt 2018)

Ouroboros

Genesis
(CCS 2018)

Ouroboros

Chronos
(In submission, 2019)

Ouroboros BFT

Ouroboros

Crypsinous
(S&P 2019)

An extremely simple BFT protocol that follows

from the Ouroboros Classic analysis

Ouroboros with Privacy

Central Observation:
A characteristic string (assume binary) with Hamming-

weight less than 1/3 is not forkable.

Ouroboros – Praos & Genesis

113

Ouroboros

“Classic”
(Crypto 17)

Ouroboros

Praos
(Eurocrypt 2018)

Ouroboros

Genesis
(CCS 2018)

Ouroboros

Chronos
(In submission, 2019)

+ Adaptive Adversaries

+ Network Delay (“semi-synchronous”)

+ Full dynamic availability

+ Bootstrapping from Genesis

+ Only based on same-speed assumption.

+ Bootstrapping state and time from genesis

Semi-adaptive adversaries, synchrony

Strong mathematical framework

= PoS blockchain in the DA setting

without global clocks.

Ouroboros – Praos & Genesis

114

Ouroboros

“Classic”
(Crypto 17)

Ouroboros

Praos
(Eurocrypt 2018)

Ouroboros

Genesis
(CCS 2018)

Ouroboros

Chronos
(In submission, 2019)

+ Adaptive Adversaries

+ Network Delay (“semi-synchronous”)

+ Full dynamic availability

+ Bootstrapping from Genesis

+ Only based on same-speed assumption.

+ Bootstrapping state and time from genesis

Semi-adaptive adversaries, synchrony

Strong mathematical framework

= PoS blockchain in the DA setting

without global clocks.

Stronger cryptographic primitives needed:

- To enable private lottery

- To fully mitigate adaptive corruptions

Ouroboros – Praos & Genesis

115

Ouroboros

“Classic”
(Crypto 17)

Ouroboros

Praos
(Eurocrypt 2018)

Ouroboros

Genesis
(CCS 2018)

Ouroboros

Chronos
(In submission, 2019)

+ Adaptive Adversaries

+ Network Delay (“semi-synchronous”)

+ Full dynamic availability

+ Bootstrapping from Genesis

+ Only based on same-speed assumption.

+ Bootstrapping state and time from genesis

Semi-adaptive adversaries, synchrony

Strong mathematical framework

= PoS blockchain in the DA setting

without global clocks.

Newcomers should be able to join the

system without the extra help of existing

parties.

Ouroboros – Praos & Genesis

116

Ouroboros

“Classic”
(Crypto 17)

Ouroboros

Praos
(Eurocrypt 2018)

Ouroboros

Genesis
(CCS 2018)

Ouroboros

Chronos
(In submission, 2019)

+ Adaptive Adversaries

+ Network Delay (“semi-synchronous”)

+ Full dynamic availability

+ Bootstrapping from Genesis

+ Only based on same-speed assumption.

+ Bootstrapping state and time from genesis

Semi-adaptive adversaries, synchrony

Strong mathematical framework

= PoS blockchain in the DA setting

without global clocks.

Genesis Security Proof

Cryptographic Tools to Protect against Adaptive

Adversaries

117

Cryptographic Tools to Protect against Adaptive

Adversaries

118

Verifiable random functions (VRF) – with unpredictability under

malicious key generation.

→ Output appears pseudo-random (for a new input)

→ Input and output are verifiably tied together

→ Output cannot be biased by crafting strange keys

→ Purpose: Allow private leader-election and thereby

a more realistic attacker model (mitigate adaptive attacks).

(𝑉𝑅𝐹. 𝐺𝑒𝑛, 𝑉𝑅𝐹. 𝐸𝑣𝑎𝑙, 𝑉𝑅𝐹. 𝑉𝑒𝑟𝑖𝑓𝑦)

Cryptographic Tools to Protect against Adaptive

Adversaries

119

Key evolving signature scheme (KES)

→ Operates as normal signature scheme (unforgeable)

→ Key updates: All values signed “in the past” remain

unforgeable even if party gets corrupted after the update.

→ Purpose: Protect previous actions and thereby allow

realistic corruption model (tolerate “immediate corruptions”).

(𝐾𝐸𝑆. 𝐺𝑒𝑛, 𝐾𝐸𝑆. 𝑆𝑖𝑔𝑛, 𝐾𝐸𝑆. 𝑈𝑝𝑑𝑎𝑡𝑒, 𝐾𝐸𝑆. 𝑉𝑒𝑟𝑖𝑓𝑦)

Ouroboros Praos/Genesis: Basic Operation

120

Epoch - 2 Epoch - 1 Current epoch

121

Epoch - 2 Epoch - 1 Current epoch

- In each slot, each party evaluates slot-leadership.
Private election, proportional to stake, including recent randomness from the chain

- A slot leader extends a chain by creating the block for this slot.

Ouroboros Praos/Genesis: Basic Operation

122

Epoch - 2 Current epochEpoch - 1

Ouroboros Praos/Genesis: Basic Operation

123

Epoch - 2 Current epochEpoch - 1

Ouroboros Praos/Genesis: Basic Operation

124

1) Agreement on stake distribution
Current epochEpoch - 2

Ouroboros Praos/Genesis: Basic Operation

Ouroboros Praos/Genesis: Basic Operation

125

Current epoch
1) Agreement on stake distribution.

2) Agreement on randomness.

3) Randomness affected by honest block(s)

Epoch - 2

𝑉𝑅𝐹. 𝐸𝑣𝑎𝑙𝑠𝑘𝑖 "NONCE", 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑠𝑒𝑒𝑑, 𝑠𝑙𝑜𝑡

Simple Randomness-Beacon Implementation:

Current seed := Hash of verifiably random values

from the chain.

Ouroboros Praos/Genesis: Basic Operation

126

Current epoch
1) Agreement on stake distribution.

2) Agreement on randomness.

3) Randomness affected by honest block(s)

Epoch - 2

Lottery in each slot:

A party i is leader if and only if

- Empty slots possible

- Multiple leaders possible

- Leadership proof from VRF.

𝑉𝑅𝐹. 𝐸𝑣𝑎𝑙𝑠𝑘𝑖 "TEST", 𝒔𝒆𝒆𝒅, 𝑠𝑙𝑜𝑡 < 𝑇(𝑠𝑡𝑎𝑘𝑒𝑖)

→

→

Ouroboros Praos/Genesis:

Details on Leader Election

127

𝑉𝑅𝐹. 𝐸𝑣𝑎𝑙𝑠𝑘𝑖 "TEST", 𝒔𝒆𝒆𝒅, 𝑠𝑙𝑜𝑡 < 𝑇(𝑠𝑡𝑎𝑘𝑒𝑖)

𝑇 𝑠𝑡𝑎𝑘𝑒𝑖 = 2ℓ𝑉𝑅𝐹 𝜑𝑓(𝑟𝑒𝑙. 𝑠𝑡𝑎𝑘𝑒𝑖)

𝜑𝑓 𝑥 = 1 − (1 − 𝑓)𝑥

→

→

Ouroboros Praos/Genesis:

Details on Leader Election

128

𝑉𝑅𝐹. 𝐸𝑣𝑎𝑙𝑠𝑘𝑖 "TEST", 𝒔𝒆𝒆𝒅, 𝑠𝑙𝑜𝑡 < 𝑇(𝑠𝑡𝑎𝑘𝑒𝑖)

𝜑𝑓 𝑥 = 1 − (1 − 𝑓)𝑥

Some remarks:

1.) Active slot coefficient: ; slot empty with prob. .

2.) Independent aggregation property:

→ Probability of leadership independent of distribution to addresses.

→ The concave (and subadditive as) property eases the analysis.

𝜑𝑓 1 = 𝑓 1 − 𝑓

1 − 𝜑𝑓 ෍

𝑖

𝑥𝑖 =ෑ

𝑖

(1 − 𝜑𝑓 𝑥𝑖)

𝜑𝑓 0 = 0

𝑇 𝑠𝑡𝑎𝑘𝑒𝑖 = 2ℓ𝑉𝑅𝐹 𝜑𝑓(𝑟𝑒𝑙. 𝑠𝑡𝑎𝑘𝑒𝑖)

Recall: Chain-Selection Rule

129

G Local

130

1

LocalG

Recall: Chain-Selection Rule

131

1

LocalG

Recall: Chain-Selection Rule

132

2

1

LocalG

Recall: Chain-Selection Rule

Attention: Longest Chain Rule Does not Work

133

Local

Family of long-range attacks

(e.g., stake-bleeding [GKR18])

2

LocalG

Recall: Chain-Selection Rule

134

2

1

LocalG

Chain Selection Rule [e.g., DGKR18] :

Adopt a valid new chain…

1) …if it is longer and does not fork by

more than k blocks from local chain.

Otherwise, keep local chain.

At first sight…

135

… it seems one would require one of the following:

1.) Online parties maintain a moving checkpoint
→ Joining parties need advice.

2.) A fixed and known lower bound on participation
→ No flexible participation, protocol might be stalled.

Ouroboros – Praos & Genesis

136

Ouroboros

“Classic”
(Crypto 17)

Ouroboros

Praos
(Eurocrypt 2018)

Ouroboros

Genesis
(CCS 2018)

Ouroboros

Chronos
(In submission, 2019)

+ Adaptive Adversaries

+ Network Delay (“semi-synchronous”)

+ Full dynamic availability

+ Bootstrapping from Genesis

+ Only based on same-speed assumption.

+ Bootstrapping state and time from genesis

Semi-adaptive adversaries, synchrony

Strong mathematical framework

= PoS blockchain in the DA setting

without global clocks.

… it seems one would require one of the following:

1.) Online parties maintain a moving checkpoint
→ Joining parties need advice.

2.) A fixed and known lower bound on participation
→ No flexible participation, protocol might be stalled.

The Genesis Chain-Selection Rule

137

We do not require either of these!

Thanks to a more involved Chain-Selection Rule

138

The Genesis Chain-Selection Rule

139

G

Now

The Genesis Chain-Selection Rule

140

INT
(Protocol parameter: size of INT)

Now

Time-Interval after fork

G

The Genesis Chain-Selection Rule

The Genesis Chain-Selection Rule

141

Now
INT

Time-Interval after fork

G

Genesis Rule:

Adopt a valid new chain…

1) …if it is longer and does not fork by

more than k blocks from local chain.

2) … or if it forks by more than k blocks

but has higher block density on interval INT.

Otherwise, keep local chain.

Ouroboros – Praos & Genesis

142

Ouroboros

“Classic”
(Crypto 17)

Ouroboros

Praos
(Eurocrypt 2018)

Ouroboros

Genesis
(CCS 2018)

Ouroboros

Chronos
(In submission, 2019)

+ Adaptive Adversaries

+ Network Delay (“semi-synchronous”)

+ Full dynamic availability

+ Bootstrapping from Genesis

+ Only based on same-speed assumption.

+ Bootstrapping state and time from genesis

Semi-adaptive adversaries, synchrony

Strong mathematical framework

= PoS blockchain in the DA setting

without global clocks.

Genesis Security Proof

Roadmap of Security Proof of Genesis

▪ Security of Ouroboros Genesis with the old chain

selection rule (=Praos) and dynamic participation

but no newly joining parties.

▪ Security for joining parties: new Genesis rule in

action.

143

▪ Security of Ouroboros Genesis with the old chain

selection rule (=Praos) and dynamic participation

but no newly joining parties.

▪ Security for joining parties: new Genesis rule in

action.

144

Roadmap of Security Proof of Genesis

145

0 ꓕ 0 ꓕ ꓕ 1 0 1 ꓕ ꓕ 0 1 0

Security under dynamic Participation

▪ Recall the Fork abstraction:

0

5 7

7

2

9

10 11

10

6

5

146

0

5 7

7

2

9

10 11

10

6

5
A substantial CP-violation (divergence)

occurs only with negligible probability if:

Majority of active stake is honest.

0 ꓕ 0 ꓕ ꓕ 1 0 1 ꓕ ꓕ 0 1 0

Security under dynamic Participation

▪ Recall the Fork abstraction:

147

0

5 7

7

2

9

10 11

10

6

5
A substantial CP-violation (divergence)

occurs only with negligible probability if:

0 ꓕ 0 ꓕ ꓕ 1 0 1 ꓕ ꓕ 0 1 0

Security under dynamic Participation

▪ Recall the Fork abstraction:

148

• Dynamic Participation: Dependent variables, biased lottery in

favor of honest parties → Martingales

• We show Common Prefix, Chain Growth, Chain Quality

• Realizes the ledger (composable analysis)

Security under dynamic Participation

▪ Security of Ouroboros Genesis with the old chain

selection rule (=Praos) and dynamic participation

but no newly joining parties.

▪ Security for joining parties: new Genesis rule in

action.

149

Roadmap of Security Proof of Genesis

150

If a party is always up-to-date and using the Genesis chain-

selection rule, she will never adopt a chain that forks by more

than k blocks (compared to her local chain in any round).

Using the Genesis chain-selection rule, a newly joining party

will adopt a recent chain with large common prefix w.r.t. honest

parties. No other advice than the genesis block is needed.

Claim 1:

Claim 2:

Security of the Genesis Rule

151

If a party is always up-to-date and using the Genesis chain-

selection rule, she will never adopt a chain that forks by more

than k blocks (compared to her local chain in any round).

Using the Genesis chain-selection rule, a newly joining party

will adopt a recent chain with large common prefix w.r.t. honest

parties. No other advice than the genesis block is needed.

Claim 1:

Claim 2:

Security of the Genesis Rule

Claim 1 – Proof Idea

152

NowInterval INT

Claim 1 – Proof Idea

153

NowInterval INT

Claim 1 – Proof Idea

154

NowInterval INT First honest

slot after INT

155

NowInterval INT

A substantial divergence! Hence, situation does not occur.

Claim 1 – Proof Idea

Covered by previous “Praos” analysis.

156

If a party is always up-to-date and using the Genesis chain-

selection rule, she will never adopt a chain that forks by more

than k blocks (compared to her local chain in any round).

Using the Genesis chain-selection rule, a newly joining party

will adopt a recent chain with large common prefix w.r.t. honest

parties. No other advice than the genesis block is needed.

Claim 1:

Claim 2:

Security of the Genesis Rule

157

t0

First newly joining party

Claim 2 – Proof Idea

158

t0

Claim 2 – Proof Idea

First newly joining party

159

t0

If decides to adopt

a “good” chain C, then

so does

Claim 2 – Proof Idea

160

t0

Claim 2 – Proof Idea

CG

161

t0

Claim 2 – Proof Idea

C

C’

G

162

t0

Claim 2 – Proof Idea

C

C’

A substantial divergence does not occur.

Covered by previous analysis of

new chain-selection rule

G

Privacy in Ouroboros: Crypsinous

163

Ouroboros

“Classic”
(Crypto 17)

Ouroboros

Praos
(Eurocrypt 2018)

Ouroboros

Genesis
(CCS 2018)

Ouroboros

Chronos
(In submission, 2019)

Ouroboros BFT

Ouroboros

Crypsinous
(S&P 2019)

Genesis with Privacy

Privacy in Ouroboros: Crypsinous

164

Ouroboros

“Classic”
(Crypto 17)

Ouroboros

Praos
(Eurocrypt 2018)

Ouroboros

Genesis
(CCS 2018)

Ouroboros

Chronos
(In submission, 2019)

Ouroboros BFT

Ouroboros

Crypsinous
(S&P 2019)

Problem Summary:

Public verifiability of leader schedule

vs.

Hide amount of stake possessed

Genesis with Privacy

Privacy in Ouroboros: Crypsinous

165

Ouroboros

“Classic”
(Crypto 17)

Ouroboros

Praos
(Eurocrypt 2018)

Ouroboros

Genesis
(CCS 2018)

Ouroboros

Chronos
(In submission, 2019)

Ouroboros BFT

Ouroboros

Crypsinous
(S&P 2019)

Genesis with Privacy

- Zero-knowledge proof systems

- SNARKs

Ouroboros: Real-World Implementations

166

Ouroboros

“Classic”
(Crypto 17)

Ouroboros

Praos
(Eurocrypt 2018)

Ouroboros

Genesis
(CCS 2018)

Ouroboros

Chronos
(In submission, 2019)

Ouroboros BFT

Cardano is running on Ouroboros PoS and

other companies are implementing versions

of it.

Ouroboros – Chronos

167

Ouroboros

“Classic”
(Crypto 17)

Ouroboros

Praos
(Eurocrypt 2018)

Ouroboros

Genesis
(CCS 2018)

Ouroboros

Chronos
(In submission, 2019)

+ Adaptive Adversaries

+ Network Delay (“semi-synchronous”)

+ Full dynamic availability

+ Bootstrapping from Genesis

+ Only based on same-speed assumption.

+ Bootstrapping state and time from genesis

Semi-adaptive adversaries, synchrony

Strong mathematical framework

= PoS blockchain in the DA setting

without global clocks.

168

So far: Dependency on a Good Timing Service

Time axis:

Clock Functionality

169

So far: Dependency on a Good Timing Service

Time axis:

Slot Axis:

170

So far: Dependency on a Good Timing Service

Time axis:

Slot Axis:

s

s

s

NOW

171

So far: Dependency on a Good Timing Service

Time axis:

Slot Axis:

s

s

Recall Lottery (Nakamoto-Style Consensus):

- A party I is leader if and only if

- All have the same idea of future and past

- Example: “future chains are rejected - because bad anyway”.

𝑉𝑅𝐹𝑠𝑘𝑖 TEST, 𝑠𝑒𝑒𝑑, 𝒔𝒍𝒐𝒕 < 𝑇(𝑠𝑡𝑎𝑘𝑒𝑖)

So far: Dependency on a Good Timing Service

172

Time axis:

Clock Functionality

Strong Assumption:
- Perfect time coordination for everyone,

including newly joining parties.

- Needs another protocol eventually, e.g. NTP.

173

Better: Same-Speed Assumption

Time axis:

Slot Axis: …

…

…

…

s

s+2

s-1

174

Time axis:

Slot Axis:

s

Coping with Imperfect Coordination

NOW

s+2

s-1

175

Genesis: Situation not that bad…

If we manage to keep all honest parties somewhat

close we’re kind of good.

176

Genesis: Situation not that bad…

If we manage to keep all honest parties somewhat

close we’re kind of good.

• Close together: Honest parties’ timestamps are never

more than Δ apart (order of network delay).

• Small adjustments needed to Ouroboros Genesis to

deal with future chains

177

Genesis: Situation not that bad…

If we manage to keep all honest parties somewhat

close we’re kind of good.

• Close together: Honest parties’ timestamps are never

more than Δ apart (order of network delay).

• Small adjustments needed to Ouroboros Genesis to

deal with future chains.

→ Same-speed: Initial parties do stay close.

→ Joining parties have a harder life…

178

Genesis: Situation not that bad…

179

Genesis: Situation not that bad…
Joining party:

180

Genesis: Situation not that bad…
Joining party:

Genesis chain selection rule:

- Good prefix is the densest prefix

- Genesis rule prefers densest prefix

181

Genesis: Situation not that bad…
Joining party:

No reliable local time:

- No cut-off possible

- No reliable ledger state

Genesis chain selection rule:

- Good prefix is the densest prefix

- Genesis rule prefers densest prefix

182

The Synchronization Problem

• Joining parties: Need to bootstrap a good timestamp
• Only source of information: network traffic and genesis block.

• Good: Within the Δ-interval of existing honest parties.

• From before: Good timestamp → Good state.

• Bootstrapping under the same assumptions.
• Same-speed, honest majority, diffusion network, RO

• The dynamic availability setting (similar to the Bitcoin setting for

fixed difficulty).

183

The Synchronization Problem

This is what Chronos achieves

• Joining parties: Need to bootstrap a good timestamp
• Only source of information: network traffic and genesis block.

• Good: Within the Δ-interval of existing honest parties.

• From before: Good timestamp → Good state.

• Bootstrapping under the same assumptions.
• Same-speed, honest majority, diffusion network, RO

• The dynamic availability setting (similar to the Bitcoin setting for

fixed difficulty).

184

Chronos Overview

185

Chronos Overview

- Alert parties: broadcast time-beacons and leave

evidence of beacons in the blockchain.

186

Chronos Overview

- Alert parties: broadcast time-beacons and leave

evidence of beacons in the blockchain.

- They perform local-clock adjustments based on the

evidence in the chain.
- Small adjustments to local clocks at the end of an epoch

- Based on the evidence left in the chain.

187

Chronos Overview

- Alert parties: broadcast time-beacons and leave

evidence of beacons in the blockchain.

- They perform local-clock adjustments based on the

evidence in the chain.
- Small adjustments to local clocks at the end of an epoch

- Based on the evidence left in the chain.

- Joining parties: Once hooked up on a prefix of the

densest chain, record beacons and retrace the evidence.
- Perform the very same clock adjustments to compute a good timestamp

188

Chronos Overview

- Alert parties: broadcast time-beacons and leave

evidence of beacons in the blockchain.

- They perform local-clock adjustments based on the

evidence in the chain.
- Small adjustments to local clocks at the end of an epoch

- Based on the evidence left in the chain.

- Joining parties: Once hooked up on a prefix of the

densest chain, record beacons and retrace the evidence.
- Perform the very same clock adjustments to compute a good timestamp

189

Chronos – Sync-Beacons

Epoch E

Additional “Timing Lottery” in the first part of the epoch:

- IF THEN

- Broadcast Sync-Beacon:

- Normal slot leaders pack transactions + beacons.

𝑽𝑹𝑭𝒔𝒌𝒊 "SYNC", 𝒔𝒆𝒆𝒅, 𝒔𝒍𝒐𝒕 < 𝑻(𝒔𝒕𝒂𝒌𝒆𝒊)

Beacon
VRF

Proof

slot

192

Chronos Overview

- Alert parties: broadcast time-beacons and leave

evidence of beacons in the blockchain.

- They perform local-clock adjustments based on the

evidence in the chain.
- Small adjustments to local clocks at the end of an epoch

- Based on the evidence left in the chain.

- Joining parties: Once hooked up on a prefix of the

densest chain, record beacons and retrace the evidence.
- Perform the very same clock adjustments to compute a good timestamp

193

Chronos: Synchronization Procedure

- Throughout the epochs: Alice records the arrival times of

valid beacons (filter out duplicates, invalid ones etc.)

- At the end of each epoch: Compute local clock-adjustment.

B B

BB

Chronos: Synchronization Procedure

- Throughout the epochs: Alice records the arrival times of

valid beacons (filter out duplicates, invalid ones etc.)

- At the end of each epoch: Compute local clock-adjustment.

B B

BB

- At the end of epoch: for each recorded beacon, do:

- RECOM := slot – ARRIVALTIME
Beacon

VRF

Proof

slot

Beacon
VRF

Proof

slot

194

Adjustment rule:

- At the end of epoch: add the median of recommendations to local

time:

Chronos: Synchronization Procedure

B:
sl

B B

BB

RECOM
B:

sl
RECOM

B:
sl

RECOM
B:

sl
RECOM

B:
sl

RECOM

195

Example

slbob=T-y

T

Beacon

sl

sl := T-x

slalice=T-z

196

T T + δ’T + δ

Example

slbob=T-y

Beacon

sl

sl := T-x

slalice=T-z

197

(T-z + r) + (T-x) - (T-z + δ)

= r + (T-x) - δ

T T + δ’T + δ T + r

Example

slbob=T-y

Beacon

sl

sl := T-x

slalice=T-z

198

r’ + (T-x) - δ

T + δ’T + δ T + r T + r’

r’ + (T-x) – δ’

T

Example

slbob=T-y

Beacon

sl

sl := T-x

slalice=T-z

199

T-y

T T + δ’T + δ T + r T + r’

Properties of the Synchronization Procedure

T-y

Beacon

Sl

sl := T-x

T-z

r’ + (T-x) – δ’

r’ + (T-x) - δ

Local Clocks are Δ-close!
(because |δ’- δ| ≤ Δ)

200

B:
sl

RECOM
B:

sl
RECOM

B:
sl

RECOM
B:

sl
RECOM

B:
sl

RECOM

Furthermore, by honest-majority assumption:

→ Median, i.e., adjustment is bounded.

Properties of the Synchronization Procedure

201

202

Chronos Overview

- Alert parties: broadcast time-beacons and leave

evidence of beacons in the blockchain.

- They perform local-clock adjustments based on the

evidence in the chain.
- Small adjustments to local clocks at the end of an epoch

- Based on the evidence left in the chain.

- Joining parties: Once hooked up on a prefix of the

densest chain, record beacons and retrace the evidence.
- Perform the very same clock adjustments to compute a good timestamp

203

Chronos: Joining Procedure

204

Chronos: Joining Procedure

205

Chronos: Joining Procedure

206

Chronos: Joining Procedure

- Densest chain wins, good prefix.

207

Chronos: Joining Procedure

208

Chronos: Joining Procedure

B:
sl

RECOM B:
sl

RECOM

B:
sl

RECOM

B:
sl

RECOM

209

Chronos: Joining Procedure

B:
sl

RECOM B:
sl

RECOM

B:
sl

RECOM

B:
sl

RECOM

B B

Required Beacon Properties:

- Fresh information: Only generated after

becoming online.

- Validated and filtered w.r.t. fresh lottery.

- Contained in common prefix.

210

Chronos: Joining Procedure

B:
sl

RECOM B:
sl

RECOM

B:
sl

RECOM

B:
sl

RECOM

B B

211

Chronos - Summary

B B

BB

B B

BB

- Bootstrapping the local clock is possible thanks to
- Agreement on evidence

- Freshness of beacons: reasoning as before to get Δ-close

- Clock adjustments of alert parties can be retraced
- Stop when computed timestamp is before the next sync-slot.

- Good time-stamp → Good blockchain
- Cut-off future blocks and the genesis rule guarantees the rest.

212

B B

BB

B B

BB

Chronos - Summary

- Bootstrapping the local clock is possible thanks to
- Agreement on evidence

- Freshness of beacons: reasoning as before to get Δ-close

- Clock adjustments of alert parties can be retraced
- Stop when computed timestamp is before the next sync-slot.

- Good time-stamp → Good blockchain
- Cut-off future blocks and the genesis rule guarantees the rest.

213

B B

BB

B B

BB

- Bootstrapping the local clock is possible thanks to:
- Agreement on evidence

- Freshness of beacons: reasoning as before to get Δ-close

- Clock adjustments of alert parties can be retraced
- Stop when computed timestamp is before the next sync-slot.

- Good time-stamp → Good blockchain
- Cut-off future blocks and the genesis rule guarantees the rest.

Chronos - Summary

Playing With Ouroboros

214

ouroboros.iohk.io

Check out the interactive Ouroboros animation:

End of the Tutorial – Thank you!

215

Ouroboros

“Classic”
(Crypto 17)

Ouroboros

Praos
(Eurocrypt 2018)

Ouroboros

Genesis
(CCS 2018)

Ouroboros

Chronos
(In submission, 2019)

+ Adaptive Adversaries

+ Network Delay (“semi-synchronous”)

+ Full dynamic availability

+ Bootstrapping from Genesis

+ Only based on same-speed assumption.

+ Bootstrapping state and time from genesis

Semi-adaptive adversaries, synchrony

Strong mathematical framework

= PoS blockchain in the DA setting

without global clocks.

Email: christian.badertscher@ed.ac.uk

References:

Classic: A. Kiayias, A. Russell, B. David, R. Oliynikov: Ouroboros: A Provably Secure Proof-of-

Stake Blockchain Protocol. Crypto 2017

Praos: B. David, P. Gaži, A. Kiayias, A. Russell. Ouroboros Praos: An adaptively-secure,

semi-synchronous proof-of-stake protocol. Eurocrypt 2018.

Genesis: C. Badertscher, P. Gaži, A. Kiayias, A. Russell, V. Zikas. Ouroboros Genesis:

Composable Proof-of-Stake Blockchains with Dynamic Availability. CCS 18.

Chronos: C. Badertscher, P. Gaži, A. Kiayias, A. Russell, V. Zikas. Ouroboros Chronos:

Permissionless Clock-Synchronization via Proof-of-Stake. ia.cr/2019/838

Crypsinous: T. Kerber, A. Kiayias, M. Kohlweiss, V. Zikas: Ouroboros Crypsinous:

Privacy-Preserving Proof-of-Stake. IEEE S&P 2019.

O-BFT: A. Kiayias, A. Russell: Ouroboros-BFT: A Simple Byzantine Fault Tolerant Consensus

Protocol. ia.cr/2018/1049

--

[BMTZ17]: C. Badertscher, U. Maurer, D. Tschudi, V. Zikas. Bitcoin as a Transaction Ledger: A

Composable Treatment. Crypto 17.

[GKR18]: P. Gaži, A. Kiayias, A. Russell. Stake-Bleeding Attacks on Proof-of-Stake Blockchains.

Crypto Valley Conference 2018.

GKL Analysis: J. Garay, A. Kiayias, N. Leonardos: The Bitcoin Backbone Protocol: Analysis and Applications. Eurocrypt 2015.

PSs Analysis: R. Pass, L. Seeman, A. Shelat: Analysis of the Blockchain Protocol in Asynchronous Networks. Eurocrypt 2016.

Fruitchain: R. Pass, E. Shi: Fruitchains: A Fair Blockchain. PODC 2017

Images: https://openclipart.org/

Contact information and credits

216

https://ia.cr/2019/838
https://ia.cr/2018/1049

